论文标题
Barchan沙丘的谷物规模计算
Grain-scale computations of barchan dunes
论文作者
论文摘要
Barchans是在各种环境和鳞片中常见的新月形沙丘:从在水下发现的10厘米长的Barchans到火星上的1公里长的Barchans,经过地球沙漠上100米长的沙丘。尽管本质上无处不在,但缺乏对这些床形的生长和演变的谷物规模计算。在本文中,我们研究了晶粒特性的值(滑动摩擦,滚动摩擦和恢复原状的系数),以进行具有CFD -DEM(计算流体动力学 - 离散元素方法)的水下Barchans的数值模拟,以及这些Coefficients的值如何改变Barchan动力学。我们利用LES(大型涡模拟)进行流体,改变了DEM中滑动摩擦,滚动摩擦和恢复的系数,并将输出与实验进行了比较。我们显示:(i)对于玻璃球的情况,是正确获得沙丘形态,时标,单个晶粒的轨迹以及晶粒所经历的力的系数值; (ii)LES网格允许在捕获流体流动的主要干扰时进行床负载计算; (iii)系数的不同值如何影响Barchans的形态; (iv)具有较高系数的滚动摩擦系数的球可用于模拟由角晶粒组成的barchans。我们的结果代表了执行模拟的重要步骤,该模拟同时捕获流体流量(大涡流)和晶粒运动(单个颗粒)的细节。
Barchans are crescent-shaped dunes commonly found in diverse environments and scales: from the 10-cm-long barchans found under water to the 1-km-long barchans on Mars, passing by the 100-m-long dunes on Earth's deserts. Although ubiquitous in nature, there is a lack of grain-scale computations of the growth and evolution of those bedforms. In this paper, we investigate the values of grain properties (coefficients of sliding friction, rolling friction and restitution) necessary to carry out numerical simulations of subaqueous barchans with CFD-DEM (computational fluid dynamics - discrete element method), and how the values of those coefficients change the barchan dynamics. We made use of LES (large eddy simulation) for the fluid, varied the coefficients of sliding friction, rolling friction and restitution in the DEM, and compared the outputs with experiments. We show: (i) for the case of glass spheres, the values of coefficients for correctly obtaining the dune morphology, timescales, trajectories of individual grains, and forces experienced by grains; (ii) the LES meshes allowing computations of bedload while capturing the main disturbances of the fluid flow; (iii) how different values of coefficients affect the morphology of barchans; and (iv) that spheres with higher coefficients of rolling friction can be used for simulating barchans consisting of angular grains. Our results represent a significant step for performing simulations that capture, at the same time, details of the fluid flow (large eddies) and grains' motion (individual particles).