论文标题

AMSB QCD指南

A Guide to AMSB QCD

论文作者

Csáki, Csaba, Gomes, Andrew, Murayama, Hitoshi, Noether, Bea, Varier, Digvijay Roy, Telem, Ofri

论文摘要

我们仔细研究了超对称QCD($ su($ su(n_c)$带有$ n_f $ flavors)中的手性对称性破坏最小值,并受到异常介导的超对称断裂(AMSB)的扰动。对于$ n_f = n_c + 1 $和大多数自由磁性阶段($ n_f \ leq 1.43 n_c $)的S固定案例,我们发现天真的树水平的Baryonic runaways通过循环效应稳定了。但是,对于自由磁相的上端($ n_f \ gtrsim 1.43 n_c $)而存在,并将其插入共形窗口中,这表明在$ {\ cal o}的大场值(λ)$的大场值中存在不可估量的最小值。然而,手性对称性断裂点在局部稳定,并有望连续连接到QCD的真空,以进行大型SUSY破裂。 $ n_f = n_c $的情况需要特殊的护理,这是因为量子修改的模量空间的固有耦合性质。由于关键kähler潜在项的不可估量,因此无法确定手性对称性断裂点的稳定性,无法确定$ n_f = n_c $。除这种情况外,可以应用AMSB的所有理论($ n_f <3 n_c $)具有稳定的手性手性对称性破坏最小值,而所有具有$ n_f \ lyssim 1.43 n_c $(除$ n_f = n_f $)的理论都均从runaways中受到保护。

We present a careful study of the chiral symmetry breaking minima and the baryonic directions in supersymmetric QCD ($SU(N_c)$ with $N_f$ flavors) perturbed by Anomaly Mediated Supersymmetry Breaking (AMSB). For the s-confining case of $N_f = N_c + 1$ and most of the free-magnetic phase ($N_f \leq 1.43 N_c$) we find that naive tree level baryonic runaways are stabilized by loop effects. Runaways are present, however, for the upper end of the free magnetic phase ($N_f \gtrsim 1.43 N_c$) and into conformal window, signaling the existence of incalculable minima at large field values of ${\cal O} (Λ)$. Nevertheless, the chiral symmetry breaking points are locally stable, and are expected to continuously connect to the vacua of QCD for large SUSY breaking. The case of $N_f = N_c$ requires particular care due to the inherently strongly coupled nature of the quantum modified moduli space. Due to the incalculability of critical Kähler potential terms, the stability of the chiral symmetry breaking point along baryonic directions cannot be determined for $N_f=N_c$. With the exception of this case, all theories to which AMSB can be applied ($N_f < 3 N_c$) possess stable chiral symmetry breaking minima, and all theories with $N_f \lesssim 1.43 N_c$ (aside from $N_f = N_f$) are protected from runaways to incalculable minima.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源