论文标题
单层rashba旋转单层旋转分裂ws $ _ {2(1-x)} $ se $ _ {2x} $合金
Unidirectional Rashba Spin Splitting in Single Layer WS$_{2(1-x)}$Se$_{2x}$ alloy
论文作者
论文摘要
原子上薄的二维(2D)分层半导体,例如过渡金属二甲植物(TMDS),由于其可调的带隙,有趣的Spin-Valley物理学,压电效应和潜在的设备应用,引起了极大的关注。在这里,我们研究单层WS $ _ {1.4} $ SE $ _ {0.6} $合金的电子属性。使用角度分辨光发射光谱探索的该合金的电子结构显示出透明的价带结构各向异性,其特征在于两个抛物线通过恒定的平面内矢量向K空间的一个方向移动。该乐队分裂是单向Rashba旋转分裂的签名,相关的巨型Rashba参数为2.8 0.7 eV。角度分辨光发射光谱与压电力显微镜的组合突出了这种巨大的单向Rashba旋转分裂与合金中存在的平面极化之间的联系。 WS $ _ {1.4} $ se $ _ {0.6} $合金的这些特殊的各向异性特性可能与在生长过程中诱导的局部原子订单有关,因为S和SE原子之间的大小和电负性不同。这种扭曲的晶体结构结合到观察到的宏观拉伸应变,如光致发光所证明的那样,表现出具有强平面成分的电偶极子,如压电显微镜所示。在这种二维材料中,半导体特性,平面内自发极化和巨大的平面rashba旋转分解之间的相互作用有可能在下一代电子,压电和旋转基质设备中广泛应用。
Atomically thin two-dimensional (2D) layered semiconductors such as transition metal dichalcogenides (TMDs) have attracted considerable attention due to their tunable band gap, intriguing spin-valley physics, piezoelectric effects and potential device applications. Here we study the electronic properties of a single layer WS$_{1.4}$Se$_{0.6}$ alloys. The electronic structure of this alloy, explored using angle resolved photoemission spectroscopy, shows a clear valence band structure anisotropy characterized by two paraboloids shifted in one direction of the k-space by a constant in-plane vector. This band splitting is a signature of a unidirectional Rashba spin splitting with a related giant Rashba parameter of 2.8 0.7 eV . The combination of angle resolved photoemission spectroscopy with piezo force microscopy highlights the link between this giant unidirectional Rashba spin splitting and an in-plane polarization present in the alloy. These peculiar anisotropic properties of the WS$_{1.4}$Se$_{0.6}$ alloy can be related to local atomic orders induced during the growth process due the different size and electronegativity between S and Se atoms. This distorted crystal structure combined to the observed macroscopic tensile strain, as evidenced by photoluminescence, displays electric dipoles with a strong in-plane component, as shown by piezoelectric microscopy. The interplay between semiconducting properties, in-plane spontaneous polarization and giant out-of-plane Rashba spin-splitting in this two-dimensional material has potential for a wide range of applications in next-generation electronics, piezotronics and spintronics devices.