论文标题
机器学习协助微孔子的逆设计
Machine Learning Assisted Inverse Design of Microresonators
论文作者
论文摘要
对具有所需光学特性的微孔子制造的高需求已导致各种技术来优化几何结构,非线性和分散。根据应用的不同,此类谐振器中的色散会反驳其光学非线性并影响腔内光学动力学。在本文中,我们证明了使用机器学习(ML)算法作为确定微孔子分散曲线几何形状的工具。具有〜460个样品的训练数据集由有限元模拟生成,并使用氮化硅微孔子进行实验验证该模型。比较了两种ML算法以及合适的高参数调整,其中随机森林(RF)产生的结果最佳。模拟数据的平均误差远低于15%。
The high demand for fabricating microresonators with desired optical properties has led to various techniques to optimize geometries, mode structures, nonlinearities and dispersion. Depending on applications, the dispersion in such resonators counters their optical nonlinearities and influences the intracavity optical dynamics. In this paper, we demonstrate the use of a machine learning (ML) algorithm as a tool to determine the geometry of microresonators from their dispersion profiles. The training dataset with ~460 samples is generated by finite element simulations and the model is experimentally verified using integrated silicon nitride microresonators. Two ML algorithms are compared along with suitable hyperparameter tuning, out of which Random Forest (RF) yields the best results. The average error on the simulated data is well below 15%.