论文标题
$τ_i$ - 订单商的弹性四
$τ_I$-Elasticity for quotients of order four
论文作者
论文摘要
对于具有非零身份的交换域$ r $,$ i $是$ r $的理想,我们说$ a =λb_1\ cdots b_k $是$τ_i$ -factorization $ a $ a $ a $ a $ a $ a $ a $ a $ in $ in r $是一个单位和$ b_i \ equiv b_j $(equiv equiv b_j $(mod $ i $ $ $ i $ $ $ eq ke)。这些因素化是不合时宜的,同一元素的两个因素化可能具有不同的长度。在本文中,我们确定了最小的$ r/i $,其中$ r $是一个独特的分解域,$ i \ subset r $是理想的,而$ r $包含一个元素,其中具有原子$τ_i$的元素 - 不同长度的factorizations。实际上,对于$ r = \ mathbb {z} [x] $和$ i =(2,x^2+x)$,我们可以找到一系列元素$ a_i $具有原子$τ_i$ - 长度为2和长度$ i $的$ i $的$ i $的$ i $的$ i \ in \ mathbb {n n n} $中的$ i $之一。
For a commutative domain $R$ with nonzero identity and $I$ an ideal of $R$, we say $a=λb_1 \cdots b_k$ is a $τ_I$-factorization of $a$ if $λ\in R$ is a unit and $b_i \equiv b_j$(mod $I$) for all $1\leq i \leq j \leq k$. These factorizations are nonunique, and two factorizations of the same element may have different lengths. In this paper, we determine the smallest quotient $R/I$ where $R$ is a unique factorization domain, $I\subset R$ an ideal, and $R$ contains an element with atomic $τ_I$-factorizations of different lengths. In fact, for $R=\mathbb{Z}[x]$ and $I = (2,x^2+x)$, we can find a sequence of elements $a_i$ that have an atomic $τ_I$-factorization of length 2 and one of length $i$ for $i\in\mathbb{N}$.