论文标题

棱镜:空间世界模型中的概率实时推断

PRISM: Probabilistic Real-Time Inference in Spatial World Models

论文作者

Mirchev, Atanas, Kayalibay, Baris, Agha, Ahmed, van der Smagt, Patrick, Cremers, Daniel, Bayer, Justin

论文摘要

我们介绍了Prism,这是一种在代理运动和视觉感知的概率生成模型中实时过滤的方法。先前的方法要么缺乏对地图和代理状态的不确定性估计,要么实时运行,没有密集的场景表示,或者不模拟代理动力学。我们的解决方案调和了所有这些方面。我们从结合了可区分渲染和6-DOF动力学的预定义状态空间模型开始。该模型中的概率推论等于同时定位和映射(SLAM),并且很难。我们对贝叶斯推断使用一系列近似值来得出概率图和状态估计。我们利用了公认的方法和封闭式更新,可以保留准确性并实现实时功能。所提出的解决方案在实时10Hz时运行,与中小型室内环境中的最先进的大满贯同样准确,具有高速无人机和手持式摄像头(Blackbird,Euroc和Tum-RGBD)。

We introduce PRISM, a method for real-time filtering in a probabilistic generative model of agent motion and visual perception. Previous approaches either lack uncertainty estimates for the map and agent state, do not run in real-time, do not have a dense scene representation or do not model agent dynamics. Our solution reconciles all of these aspects. We start from a predefined state-space model which combines differentiable rendering and 6-DoF dynamics. Probabilistic inference in this model amounts to simultaneous localisation and mapping (SLAM) and is intractable. We use a series of approximations to Bayesian inference to arrive at probabilistic map and state estimates. We take advantage of well-established methods and closed-form updates, preserving accuracy and enabling real-time capability. The proposed solution runs at 10Hz real-time and is similarly accurate to state-of-the-art SLAM in small to medium-sized indoor environments, with high-speed UAV and handheld camera agents (Blackbird, EuRoC and TUM-RGBD).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源