论文标题

Cantor套装具有高维预测

Cantor sets with high-dimensional projections

论文作者

Frolkina, Olga

论文摘要

1994年,J.COBB在$ \ Mathbb r^3 $中构建了一个Tame Cantor设置,其投影为$ 2 $ - 平面是一维的。我们表明,安托万的项链可以作为一个cantor套装的一个例子,所有预测都是一维且连接的。我们证明,每个Cantor设置为$ \ Mathbb r^n $,$ n \ geqslant 3 $,可以通过小的环境同位素移动,以便将结果的cantor放置在每个$(N-1)$ - 平面为$(n-2)$(n-2)$ - dimensional中。我们表明,如果$ x \ subset \ mathbb r^n $,$ n \ geqslant 2 $,是一种零维的压缩,其投影到某个平面$π\ subset \ subset \ subbb r^n $带有$ \ dimiss in \ in \ in \ in \ in \ {1,2,2,2,2,n-2,n-2,n-2,n-2,n-2,n-2,n-2,n-2,n-2,n-2,然后这扩展了D.R.Mcmillan,Jr。(1964)和D.G. Wright,J.J.Walsh(1982)的结果。我们使用定义路易·安托万(Louis Antoine)的序列的技术。

In 1994, J.Cobb constructed a tame Cantor set in $\mathbb R^3$ each of whose projections into $2$-planes is one-dimensional. We show that an Antoine's necklace can serve as an example of a Cantor set all of whose projections are one-dimensional and connected. We prove that each Cantor set in $\mathbb R^n$, $n\geqslant 3$, can be moved by a small ambient isotopy so that the projection of the resulting Cantor set into each $(n-1)$-plane is $(n-2)$-dimensional. We show that if $X\subset \mathbb R^n$, $n\geqslant 2$, is a zero-dimensional compactum whose projection into some plane $Π\subset \mathbb R^n$ with $\dim Π\in \{1, 2, n-2, n-1\}$ is zero-dimensional, then $X$ is tame; this extends some particular cases of the results of D.R.McMillan, Jr. (1964) and D.G.Wright, J.J.Walsh (1982). We use the technique of defining sequences which comes back to Louis Antoine.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源