论文标题

开放世界DETR:基于变压器的开放世界对象检测

Open World DETR: Transformer based Open World Object Detection

论文作者

Dong, Na, Zhang, Yongqiang, Ding, Mingli, Lee, Gim Hee

论文摘要

开放世界对象检测的目的是检测训练数据对象类中不存在的对象,作为未知对象,没有明确的监督。此外,当未知对象的相应注释逐渐给出时,必须识别未知对象的确切类,而不会忘记先前的已知类别。在本文中,我们提出了一种基于可变形的DETR的开放世界对象检测的两阶段训练方法,名为Open World Detr。在第一阶段,我们对当前注释数据进行预训练一个模型,以检测当前已知类别的对象,并同时训练附加的二进制分类器将预测分类为前景或背景类别。这有助于该模型构建一个公正的特征表示,可以促进随后过程中未知类的检测。在第二阶段,我们使用多视图的自标记策略和一致性约束微调模型的特定组件。此外,当未知类别的注释通过使用知识蒸馏和示例性重播逐步可用时,我们减轻了灾难性的遗忘。 Pascal VOC和MS-Coco的实验结果表明,我们所提出的方法的表现优于其他最先进的开放世界对象检测方法。

Open world object detection aims at detecting objects that are absent in the object classes of the training data as unknown objects without explicit supervision. Furthermore, the exact classes of the unknown objects must be identified without catastrophic forgetting of the previous known classes when the corresponding annotations of unknown objects are given incrementally. In this paper, we propose a two-stage training approach named Open World DETR for open world object detection based on Deformable DETR. In the first stage, we pre-train a model on the current annotated data to detect objects from the current known classes, and concurrently train an additional binary classifier to classify predictions into foreground or background classes. This helps the model to build an unbiased feature representations that can facilitate the detection of unknown classes in subsequent process. In the second stage, we fine-tune the class-specific components of the model with a multi-view self-labeling strategy and a consistency constraint. Furthermore, we alleviate catastrophic forgetting when the annotations of the unknown classes becomes available incrementally by using knowledge distillation and exemplar replay. Experimental results on PASCAL VOC and MS-COCO show that our proposed method outperforms other state-of-the-art open world object detection methods by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源