论文标题
Bi-lipschitz的刚度$ l^2 $ - 几乎是CMC表面
Bi-Lipschitz rigidity for $L^2$-almost CMC surfaces
论文作者
论文摘要
对于正确浸入$ \ rr^n $的平滑表面,密度接近一个和小的Willmore Energy,最佳先验估计值(Bi-Lipschitz和$ W^{2,2,2} $参数化)。我们还讨论了$ l^2 $ - 几乎是CMC表面的定量刚度。
For smooth surfaces properly immersed in the unit ball of $\RR^n$ with density close to one and small Willmore energy, the optimal a priori estimate(bi-Lipschitz and $W^{2,2}$ parametrization)is provided. We also discuss the quantitative rigidity for $L^2$-almost CMC surfaces.