论文标题

安全模仿非线性模型的灵活机器人预测控制

Safe Imitation Learning of Nonlinear Model Predictive Control for Flexible Robots

论文作者

Mamedov, Shamil, Reiter, Rudolf, Azad, Seyed Mahdi Basiri, Viljoen, Ruan, Boedecker, Joschka, Diehl, Moritz, Swevers, Jan

论文摘要

灵活的机器人可能会克服该行业的一些主要挑战,例如实现本质上安全的人类机器人协作并实现更高的有效载荷比率。但是,由于其复杂的动力学,控制柔性机器人很复杂,包括振荡行为和高维状态空间。非线性模型预测控制(NMPC)提供了一种控制此类机器人的有效手段,但其巨大的计算需求通常会在实时场景中限制其应用。为了快速控制灵活的机器人,我们建议使用模仿学习和预测性安全过滤器的NMPC安全近似。我们的框架大大减少了计算时间,同时又会造成少量的性能损失。与NMPC相比,我们的框架在模拟中控制三维柔性机器人组时,在计算时间上显示了超过八倍的改善,同时保证了安全限制。值得注意的是,我们的方法表现优于最先进的强化学习方法。快速安全近似NMPC的开发具有加速行业中灵活机器人的潜力。该项目代码可在以下网址获得:tinyurl.com/anmpc4fr

Flexible robots may overcome some of the industry's major challenges, such as enabling intrinsically safe human-robot collaboration and achieving a higher payload-to-mass ratio. However, controlling flexible robots is complicated due to their complex dynamics, which include oscillatory behavior and a high-dimensional state space. Nonlinear model predictive control (NMPC) offers an effective means to control such robots, but its significant computational demand often limits its application in real-time scenarios. To enable fast control of flexible robots, we propose a framework for a safe approximation of NMPC using imitation learning and a predictive safety filter. Our framework significantly reduces computation time while incurring a slight loss in performance. Compared to NMPC, our framework shows more than an eightfold improvement in computation time when controlling a three-dimensional flexible robot arm in simulation, all while guaranteeing safety constraints. Notably, our approach outperforms state-of-the-art reinforcement learning methods. The development of fast and safe approximate NMPC holds the potential to accelerate the adoption of flexible robots in industry. The project code is available at: tinyurl.com/anmpc4fr

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源