论文标题
使用基于T5的编码器decoder软提示调谐和对AI中生成文本的实用性的控制文本生成
Controlled Text Generation using T5 based Encoder-Decoder Soft Prompt Tuning and Analysis of the Utility of Generated Text in AI
论文作者
论文摘要
由于其有前途的应用,受控文本生成是自然语言处理领域的一项非常重要的任务。为了实现这项任务,我们主要介绍了在T5模型中使用编码器和解码器级别的软提示的新型软提示调整方法,并将其作为与T5模型在受控文本生成中的解码器相关的附加软提示的行为进行调查。然后,我们还调查了转向这种扩展软的软性促使T5模型在解码级别上的可行性,并最终分析了在AI相关任务中使用的生成文本的实用性,例如对经过合成文本进行培训的分类器进行可解释性分析的AI模型,因为缺乏适当的方法来生成适当的方法来生成适当的方法来生成适当的方法来生成适当标记的数据来实现AI III的任务。通过对该一代模型进行的深入内在和外在评估以及人工生成的数据,我们发现,与T5模型相比,该模型在编码器级别的单个软提示和使用此人工生成的数据进行培训的情感分类器与Trabifier tigut contractififififififififififififififififififififififififififififififififififififififififs and,该模型与T5模型相比产生了更好的结果。
Controlled text generation is a very important task in the arena of natural language processing due to its promising applications. In order to achieve this task we mainly introduce the novel soft prompt tuning method of using soft prompts at both encoder and decoder levels together in a T5 model and investigate the performance as the behaviour of an additional soft prompt related to the decoder of a T5 model in controlled text generation remained unexplored. Then we also investigate the feasibility of steering the output of this extended soft prompted T5 model at decoder level and finally analyse the utility of generated text to be used in AI related tasks such as training AI models with an interpretability analysis of the classifier trained with synthetic text, as there is a lack of proper analysis of methodologies in generating properly labelled data to be utilized in AI tasks. Through the performed in-depth intrinsic and extrinsic evaluations of this generation model along with the artificially generated data, we found that this model produced better results compared to the T5 model with a single soft prompt at encoder level and the sentiment classifier trained using this artificially generated data can produce comparable classification results to the results of a classifier trained with real labelled data and also the classifier decision is interpretable with respect to the input text content.