论文标题

Fenchel细分差异操作员:没有循环单调性的表征

Fenchel subdifferential operators: a characterization without cyclic monotonicity

论文作者

Martínez-Legaz, Juan Enrique

论文摘要

在实际Banach空间上,下半连续凸的功能的Fenchel细胞分差算子经典地表征为那些最大周期性单调或等效地,最大单调和周期性单调的操作员。本文提出了另一种表征,不涉及环状单调性。对于sublinear函数的细分差异操作员,新的表征大大简化了。双重的是,普通锥算子的新表征也很简单。

Fenchel subdifferential operators of lower semicontinuous proper convex functions on real Banach spaces are classically characterized as those operators that are maximally cyclically monotone or, equivalently, maximally monotone and cyclically monotone. This paper presents an alternative characterization, which does not involve cyclic monotonicity. In the case of subdifferential operators of sublinear functions, the new characterization substantially simplifies. Dually, the new characterization of normal cone operators is very simple, too.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源