论文标题
典型领域:姿势式神经领域的自我监督学习
Canonical Fields: Self-Supervised Learning of Pose-Canonicalized Neural Fields
论文作者
论文摘要
基于坐标的隐式神经网络或神经领域已成为3D计算机视觉中形状和外观的有用表示。尽管如此,尽管进步了,但在没有数据集的情况下建立神经领域仍然具有挑战性,这些对象(如Shapenet)提供了“规范化”的对象实例,这些对象实例始终符合其3D位置和方向(姿势)。我们提出了典型的场地网络(CAFI-NET),这是一种自我监督的方法,可以从表示为神经场的对象类别,特别是神经辐射场(NERFS)的对象类别中的3D姿势。 CAFI-NET使用暹罗网络体系结构直接从连续和嘈杂的辐射场中学习,该暹罗网络体系结构旨在为类别级别的规范化提取模棱两可的字段特征。在推断期间,我们的方法在任意3D姿势下采用了新的对象实例的预训练的神经辐射场,并估算了整个类别中具有一致的3D姿势的规范场。在13个对象类别的1300个NERF模型的新数据集上进行了广泛的实验表明,我们的方法匹配或超过了基于3D点云的方法的性能。
Coordinate-based implicit neural networks, or neural fields, have emerged as useful representations of shape and appearance in 3D computer vision. Despite advances, however, it remains challenging to build neural fields for categories of objects without datasets like ShapeNet that provide "canonicalized" object instances that are consistently aligned for their 3D position and orientation (pose). We present Canonical Field Network (CaFi-Net), a self-supervised method to canonicalize the 3D pose of instances from an object category represented as neural fields, specifically neural radiance fields (NeRFs). CaFi-Net directly learns from continuous and noisy radiance fields using a Siamese network architecture that is designed to extract equivariant field features for category-level canonicalization. During inference, our method takes pre-trained neural radiance fields of novel object instances at arbitrary 3D pose and estimates a canonical field with consistent 3D pose across the entire category. Extensive experiments on a new dataset of 1300 NeRF models across 13 object categories show that our method matches or exceeds the performance of 3D point cloud-based methods.