论文标题
苔丝数据的天文学精度测试
Astrometric precision tests on TESS data
论文作者
论文摘要
背景。带有成像望远镜的微弧形水平或下方的天文学假设未解决的源位置的不确定性可以是探测器像素的任意小部分,并且给定足够的光子预算。目的。本文根据CCD像素分数研究了几何限制精度,该精确度是通过大量恒星野外图像实现的,在苔丝任务的公开科学数据中选择。方法。使用Tess Light Curve文件中提供的位置估算,评估了精选的明亮恒星($ G \ simeq 5 \,mag $)之间距离之间的距离的统计数据。结果。坐标差异的分散似乎受到长期变化和嘈杂时期的影响,$ 0.01 $像素的水平。关于低通滤波数据(追踪世俗进化)的残差(解释为实验性天文噪声)达到了几毫像素或以下的水平,低至$ 1/5,900 $像素。存在饱和的图像,证明了天文学精度主要保存在CCD列中,而它在沿列方向上具有优美的降级。图像集的累积性能是跨列的几个微像素,或沿列的几个微像素。结论。从飞行中的科学仪器到$ 10^{ - 6} $像素级别的真实数据证实了天文学精度至一小部分CCD像素的一小部分(给出足够的信号)的想法。简要讨论了对未来高精度天文统计任务的影响。
Background. Astrometry at or below the micro-arcsec level with an imaging telescope assumes that the uncertainty on the location of an unresolved source can be an arbitrarily small fraction of the detector pixel, given a sufficient photon budget. Aim. This paper investigates the geometric limiting precision, in terms of CCD pixel fraction, achieved by a large set of star field images, selected among the publicly available science data of the TESS mission. Method. The statistics of the distance between selected bright stars ($G \simeq 5\,mag$), in pixel units, is evaluated, using the position estimate provided in the TESS light curve files. Results. The dispersion of coordinate differences appears to be affected by long term variation and noisy periods, at the level of $0.01$ pixel. The residuals with respect to low-pass filtered data (tracing the secular evolution), which are interpreted as the experimental astrometric noise, reach the level of a few milli-pixel or below, down to $1/5,900$ pixel. Saturated images are present, evidencing that the astrometric precision is mostly preserved across the CCD columns, whereas it features a graceful degradation in the along column direction. The cumulative performance of the image set is a few micro-pixel across columns, or a few 10 micro-pixel along columns. Conclusions. The idea of astrometric precision down to a small fraction of a CCD pixel, given sufficient signal to noise ratio, is confirmed by real data from an in-flight science instrument to the $10^{-6}$ pixel level. Implications for future high precision astrometry missions are briefly discussed.