论文标题

CBNET:用于基于分割的场景文本检测的插件网络

CBNet: A Plug-and-Play Network for Segmentation-Based Scene Text Detection

论文作者

Zhao, Xi, Feng, Wei, Zhang, Zheng, Lv, Jingjing, Zhu, Xin, Lin, Zhangang, Hu, Jinghe, Shao, Jingping

论文摘要

最近,基于细分的方法在场景文本检测中非常受欢迎,该检测主要包含两个步骤:文本内核分割和扩展。但是,细分过程只能独立考虑每个像素,而扩展过程很难实现有利的精度速度权衡。在本文中,我们提出了一个环境感知和边界指导网络(CBN)来解决这些问题。在CBN中,基本的文本检测器首先用于预测初始分割结果。然后,我们提出了一个上下文感知的模块来增强文本内核特征表示,该模块考虑了全球和本地上下文。最后,我们引入了一个边界引导的模块,以适应轮廓上的像素自适应扩展增强的文本内核,该模块不仅获得了准确的文本边界,而且还可以保持高速,尤其是在高分辨率输出图上。特别是,具有轻巧的主链,配备了我们建议的CBN的基本检测器,可以在几个流行的基准上实现最先进的结果,我们提出的CBN可以插入几种基于细分的方法中。代码可从https://github.com/xiizhao/cbn.pytorch获得。

Recently, segmentation-based methods are quite popular in scene text detection, which mainly contain two steps: text kernel segmentation and expansion. However, the segmentation process only considers each pixel independently, and the expansion process is difficult to achieve a favorable accuracy-speed trade-off. In this paper, we propose a Context-aware and Boundary-guided Network (CBN) to tackle these problems. In CBN, a basic text detector is firstly used to predict initial segmentation results. Then, we propose a context-aware module to enhance text kernel feature representations, which considers both global and local contexts. Finally, we introduce a boundary-guided module to expand enhanced text kernels adaptively with only the pixels on the contours, which not only obtains accurate text boundaries but also keeps high speed, especially on high-resolution output maps. In particular, with a lightweight backbone, the basic detector equipped with our proposed CBN achieves state-of-the-art results on several popular benchmarks, and our proposed CBN can be plugged into several segmentation-based methods. Code is available at https://github.com/XiiZhao/cbn.pytorch.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源