论文标题

使用自动编码器估算多模式密度多径组件

Estimating Multi-Modal Dense Multipath Components using Auto-Encoders

论文作者

Schieler, Steffen, Döbereiner, Michael, Semper, Sebastian, Landmann, Markus

论文摘要

我们提出了一种最大的样品估计算法,用于无线电通道测量结果,该算法表现出独立密度多径成分的混合物。我们方法的新颖性是使用深度学习体系结构的算法初始化。当前,可用的方法只能处理存在单个模式的方案。但是,在测量中,经常观察到两种或多种模式。这种更具挑战性的多模式设置有两个重要的问题:有多少个模式,我们如何估计这些模式? 为此,我们提出了一个神经网络结构,可以可靠地估计数据中存在的模式数量,并提供对其形状的初步评估。这些预测用于初始化基于梯度和模型的优化算法,以进一步完善估计值。 我们以数值方式证明了所介绍的体系结构在测量数据上的执行方式,并在分析中研究其对单模式方法失败的环境中镜面路径估计的影响。

We present a maximum-likelihood estimation algorithm for radio channel measurements exhibiting a mixture of independent Dense Multipath Components. The novelty of our approach is in the algorithms initialization using a deep learning architecture. Currently, available approaches can only deal with scenarios where a single mode is present. However, in measurements, two or more modes are often observed. This much more challenging multi-modal setting bears two important questions: How many modes are there, and how can we estimate those? To this end, we propose a Neural Net-architecture that can reliably estimate the number of modes present in the data and also provide an initial assessment of their shape. These predictions are used to initialize for gradient- and model-based optimization algorithm to further refine the estimates. We demonstrate numerically how the presented architecture performs on measurement data and analytically study its influence on the estimation of specular paths in a setting where the single-modal approach fails.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源