论文标题

(p6,三角形) - 无毛图具有限制的二分法数

(P6, triangle)-free digraphs have bounded dichromatic number

论文作者

Aboulker, Pierre, Aubian, Guillaume, Charbit, Pierre, Thomassé, Stéphan

论文摘要

定向图的二分法数是其顶点分区的最小尺寸到无环诱导的子图中。我们证明,在六个顶点上没有诱导的定向路径的方向图,没有三角形的二分法数。这是朝着一般猜想的一个(小)步骤,断言,对于每个方向的树T和每个整数K,即任何不包含t的X副本或大小k的副本的取向的图形,最多具有k和t的某些功能。

The dichromatic number of an oriented graph is the minimum size of a partition of its vertices into acyclic induced subdigraphs. We prove that oriented graphs with no induced directed path on six vertices and no triangle have bounded dichromatic number. This is one (small) step towards the general conjecture asserting that for every oriented tree T and every integer k, any oriented graph that does not contain an induced copy of T nor a clique of size k has dichromatic number at most some function of k and T.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源