论文标题

niimpy:行为数据分析的工具箱

Niimpy: a toolbox for behavioral data analysis

论文作者

Ikäheimonen, A., Triana, A. M., Luong, N., Ziaei, A., Rantaharju, J., Darst, R., Aledavood, T.

论文摘要

使用个人数字设备的行为研究通常会生成混合数据类型的丰富纵向数据集。这些数据提供了有关这些设备用户的行为的信息,并在用户的自然环境中提供了信息。分析数据需要多学科专业知识和专用软件。当前,在Python科学计算生态系统中,尚无可用的设备不可接受的软件,可以预处理和分析此类数据。本文介绍了一个Python软件包Niimpy,用于分析数字行为数据。 Niimpy工具箱是一个用户友好的开源软件包,可以快速扩展并适应特定的研究要求。工具箱通过提供用于预处理,提取功能和探索数据的工具来促进分析阶段。它还旨在对用户进行行为数据分析的教育,并促进开放科学实践。随着时间的流逝,Niimpy将通过核心组,新用户和开发人员开发的额外数据分析功能进行扩展。 Niimpy可以帮助具有不同背景的快速增长的研究人员,这些研究人员从个人和消费者数字设备收集数据来系统地有效地分析数据并提取有用的信息。这种新颖的信息对于从医学到心理学,社会学等各个领域的研究问题至关重要。

Behavioral studies using personal digital devices typically produce rich longitudinal datasets of mixed data types. These data provide information about the behavior of users of these devices in real-time and in the users' natural environments. Analyzing the data requires multidisciplinary expertise and dedicated software. Currently, no generalizable, device-agnostic, freely available software exists within Python scientific computing ecosystem to preprocess and analyze such data. This paper introduces a Python package, Niimpy, for analyzing digital behavioral data. The Niimpy toolbox is a user-friendly open-source package that can quickly be expanded and adapted to specific research requirements. The toolbox facilitates the analysis phase by offering tools for preprocessing, extracting features, and exploring the data. It also aims to educate the user on behavioral data analysis and promotes open science practices. Over time, Niimpy will expand with extra data analysis features developed by the core group, new users, and developers. Niimpy can help the fast-growing number of researchers with diverse backgrounds who collect data from personal and consumer digital devices to systematically and efficiently analyze the data and extract useful information. This novel information is vital for answering research questions in various fields, from medicine to psychology, sociology, and others.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源