论文标题

通过蒙特卡洛模拟和控制器匹配的模型预测控制调谐

Model Predictive Control Tuning by Monte Carlo Simulation and Controller Matching

论文作者

Wahlgreen, Morten Ryberg, Jørgensen, John Bagterp, Zanon, Mario

论文摘要

本文提出了一种选择模型预测控制(MPC)阶段成本的系统方法。我们将MPC反馈定律与比例综合(PI)控制器相匹配,该控制器通过高性能蒙特卡洛(MC)模拟有效调节。 PI调整提供了多种调谐可能性,然后由MPC设计继承。 PI控制器的MC模拟调整基于两个不同目标的最小化; 1)2-norm跟踪误差和2)由2-norm跟踪误差和2个符号输入损失率组成的双目标。我们将方法应用于在绝热连续搅拌罐反应器(CSTR)中进行的放热化学反应。该过程引起了人们的关注,因为非线性动态导致所需的工作点非常接近约束。我们的MPC设计包括自动设计的舞台成本,以匹配调谐的PI控制器,硬输入约束和软输出约束。随机仿真结果表明,PI控制器和MPC都可以跟踪所需的工作点。但是,与PI控制器相比,MPC显示出违反输出约束的减少。因此,MPC设计方法成功地将PI控制器的有效调整与MPC的约束处理属性结合在一起。

This paper presents a systematic method for the selection of the Model Predictive Control (MPC) stage cost. We match the MPC feedback law to a proportional-integral (PI) controller, which we efficiently tune by high-performance Monte Carlo (MC) simulation. The PI tuning offers a wide range of tuning possibilities that is then inherited by the MPC design. The MC simulation tuning of the PI controller is based on the minimization of two different objectives; 1) the 2-norm tracking error, and 2) a bi-objective consisting of the 2-norm tracking error and a 2-norm input rate of movement penalty. We apply the method to design MPC for an exothermic chemical reaction conducted in an adiabatic continuous stirred tank reactor (CSTR). The process is of interest as the nonlinear dynamics result in a desired operating point very close to a constraint. Our MPC design includes stage costs automatically designed to match the tuned PI controllers, hard input constraints, and a soft output constraint. Stochastic simulation results show that both the PI controller and the MPC can track the desired operating point. However, the MPC shows reduced output constraint violation compared to the PI controller. As such, the MPC design method successfully combines the efficient tuning of the PI controller with the constraint handling properties of MPC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源