论文标题
沃克4曼佛的2条曲面
2-Ruled Hypersurfaces in a Walker 4-Manifold
论文作者
论文摘要
HyperSurface是空间中最重要的对象之一。许多作者研究了一个空间中Hypersurfaces的不同几何方面。在本文中,我们在Walker 4-Manfold E 41中定义了三种类型的2条式超曲面。我们获得了1型,2型和3型的2型超曲面的高斯和平均曲率。我们给出了有关其最小值的一些特征。我们还与所考虑的Walker 4-Manifold中的这些类型的2条式超曲面的第一个Laplace-Beltrami操作员打交道。
The hypersurface is one of the most important objects in a space. Many authors studied diffrent geometric aspects of hypersurfaces in a space. In this paper, we define three types of 2-ruled hypersurfaces in a Walker 4-manfold E 41 . We obtain the Gaussian and mean curvatures of the 2-ruled hypersurfaces of type-1, type-2 and type 3. We give some characterizations about its minimality. We also deal with the first Laplace-Beltrami operators of these types of 2-ruled hypersurfaces in the considered Walker 4-manifold.