论文标题

神经网络的基质分解

Matrix factorization with neural networks

论文作者

Camilli, Francesco, Mézard, Marc

论文摘要

矩阵分解是在字典学习,推荐系统和机器学习的背景下遇到的重要数学问题。我们介绍了一种新的“拆卸”方案,将其映射到关联记忆的神经网络模型中,并对其性能进行详细的理论分析,表明拆卸能够分解较高的矩阵并有效地将其定位。我们基于对神经网络的地面搜索介绍了一种分解算法,该算法显示了与理论预测相匹配的性能。

Matrix factorization is an important mathematical problem encountered in the context of dictionary learning, recommendation systems and machine learning. We introduce a new `decimation' scheme that maps it to neural network models of associative memory and provide a detailed theoretical analysis of its performance, showing that decimation is able to factorize extensive-rank matrices and to denoise them efficiently. We introduce a decimation algorithm based on ground-state search of the neural network, which shows performances that match the theoretical prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源