论文标题
标签编码回归网络
Label Encoding for Regression Networks
论文作者
论文摘要
深度神经网络用于广泛的回归问题。但是,专用方法与通用直接回归之间的准确性存在很大的差距,在该方法中,通过最小化输出标签的平方或绝对误差来训练网络。先前的工作表明,通过一组二进制分类器解决回归问题可以通过利用良好的二进制分类算法来提高准确性。我们介绍了二进制编码标签(BEL),该标签(BEL)通过提供一个框架来考虑在编码目标值时考虑任意多位值的框架,从而概括了二进制分类对回归的应用。我们根据理论和经验研究确定用于实用值和二进制编码标签之间转换的合适编码和解码功能的理想特性。这些属性突出显示了标签编码的分类错误概率和错误校正功能之间的权衡。 BEL可以与特定于任务的特定功能提取器和训练有素的端到端结合使用。我们建议BEL的一系列样本编码,解码和训练损失功能,并证明它们的误差低于直接回归和专业方法,同时适合各种回归问题,网络体系结构和评估指标。 Bel为几个回归基准而实现了最先进的精度。代码可从https://github.com/ubc-aamodt-group/bel_regression获得。
Deep neural networks are used for a wide range of regression problems. However, there exists a significant gap in accuracy between specialized approaches and generic direct regression in which a network is trained by minimizing the squared or absolute error of output labels. Prior work has shown that solving a regression problem with a set of binary classifiers can improve accuracy by utilizing well-studied binary classification algorithms. We introduce binary-encoded labels (BEL), which generalizes the application of binary classification to regression by providing a framework for considering arbitrary multi-bit values when encoding target values. We identify desirable properties of suitable encoding and decoding functions used for the conversion between real-valued and binary-encoded labels based on theoretical and empirical study. These properties highlight a tradeoff between classification error probability and error-correction capabilities of label encodings. BEL can be combined with off-the-shelf task-specific feature extractors and trained end-to-end. We propose a series of sample encoding, decoding, and training loss functions for BEL and demonstrate they result in lower error than direct regression and specialized approaches while being suitable for a diverse set of regression problems, network architectures, and evaluation metrics. BEL achieves state-of-the-art accuracies for several regression benchmarks. Code is available at https://github.com/ubc-aamodt-group/BEL_regression.