论文标题
关于伪里曼尼亚人bertrand歧管的某些特性
On certain properties of pseudo-Riemannian Bertrand manifolds
论文作者
论文摘要
在本文中,我们证明并讨论了伪里曼尼亚人bertrand流形的几个属性,并概述了理论的状态以及未来工作的问题。特别是,我们证明没有伪里曼尼亚人完全bertrand系统 - 在伪里人二维革命的伪里程二维流动上的动态运动系统,因此所有运动轨迹的所有轨迹都已封闭。
In the present article we prove and discuss several properties of pseudo-Riemannian Bertrand manifolds, and give an overview of the state of the theory together with problems for future work. In particular, we prove that there are no pseudo-Riemannian completely Bertrand systems -- dynamical systems of movement in a central field on a pseudo-Riemannian 2-dimensional manifold of revolution such that all trajectories of movement are closed.