论文标题

一种无监督的机器学习方法,用于dampe实验的普罗顿歧视

An Unsupervised Machine Learning Method for Electron--Proton Discrimination of the DAMPE Experiment

论文作者

Xu, Zhihui, Li, Xiang, Cui, Mingyang, Yue, Chuan, Jiang, Wei, Li, Wenhao, Yuan, Qiang

论文摘要

银河宇宙射线主要由能量核组成,其中不到$ 1 \%$的电子(和正电子)。电子和正电子成分的精确测量需要一种非常有效的方法来拒绝核背景,主要是质子。在这项工作中,我们开发了一种无监督的机器学习方法,以识别来自宇宙射线质子的电子和正电子,用于暗物质粒子探索器(DAMPE)实验。与Dampe实验中使用的监督学习方法相比,这种无监督的方法仅依赖于实际数据,除了背景估计过程。结果,它可以有效地减少模拟中的不确定性。 For three energy ranges of electrons and positrons, 80--128 GeV, 350--700 GeV, and 2--5 TeV, the residual background fractions in the electron sample are found to be about (0.45 $\pm$ 0.02)$\%$, (0.52 $\pm$ 0.04)$\%$, and (10.55 $\pm$ 1.80)$\%$, and the background rejection电源约为(6.21 $ \ pm $ 0.03)$ \ times $ $ 10^4 $,(9.03 $ \ pm $ 0.05)$ \ times $ $ $ $ 10^4 $,和(3.06 $ \ pm $ 0.32)$ \ times $ $ $ $ $ 10^4 $。与传统的形态参数化方法相比,该方法在所有能量范围内都具有更高的背景拒绝能力,并且与监督机器学习〜方法相比,具有可比的背景拒绝性能。

Galactic cosmic rays are mostly made up of energetic nuclei, with less than $1\%$ of electrons (and positrons). Precise measurement of the electron and positron component requires a very efficient method to reject the nuclei background, mainly protons. In this work, we develop an unsupervised machine learning method to identify electrons and positrons from cosmic ray protons for the Dark Matter Particle Explorer (DAMPE) experiment. Compared with the supervised learning method used in the DAMPE experiment, this unsupervised method relies solely on real data except for the background estimation process. As a result, it could effectively reduce the uncertainties from simulations. For three energy ranges of electrons and positrons, 80--128 GeV, 350--700 GeV, and 2--5 TeV, the residual background fractions in the electron sample are found to be about (0.45 $\pm$ 0.02)$\%$, (0.52 $\pm$ 0.04)$\%$, and (10.55 $\pm$ 1.80)$\%$, and the background rejection power is about (6.21 $\pm$ 0.03) $\times$ $10^4$, (9.03 $\pm$ 0.05) $\times$ $10^4$, and (3.06 $\pm$ 0.32) $\times$ $10^4$, respectively. This method gives a higher background rejection power in all energy ranges than the traditional morphological parameterization method and reaches comparable background rejection performance compared with supervised machine learning~methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源