论文标题

关于wilf等效性的改进

On Refinements of Wilf-Equivalence for Involutions

论文作者

Yan, Sherry H. F., Wang, Lintong, Zhou, Robin D. P.

论文摘要

令$ \ MATHCAL {S} _n(π)$($ \ Mathcal {i} _n(π)$和$ \ Mathcal {ai} _n(π)$)表示置于$ n $的长度$ n $的$ n $ $ n $ $ $ $π$π的$ n $的置于$ n $的订单(resp。互动和交替的参与)。对于$ k,m \ geq 1 $,backelin-west-xin证明了$ | \ mathcal {s} _n(12 \ cdotskτ)| = | \ nathcal {s} _n(k \ cdots21τ) $ k+1,k+2,\ ldots,k+m $。结果已扩展到Bousquet-Mélou和Steingrímsson的介绍,并延伸到第一作者的交替排列。在本文中,我们将建立一个峰值集,以通过$ \ Mathcal {i} _n(123τ)$和$ \ Mathcal {i} _n(321τ)$之间的横向,匹配,振荡,tableaux和成对的非交叉Dyck路径作为IntermedMedimedMedimed结构。我们的结果是对Bousquet-Mélou和Steingrímsson的结果进行了完善,因为$ k = 3 $。作为一个应用程序,我们将$ | \ Mathcal {ai} _n(123τ)| = | \ Mathcal {ai} _n(321τ)| $,确认了最近对Barnabei-Bonetti-Castronuovo-Silimbani的猜想。此外,还证明了避免避免交替互动的Barnabei-Bonetti-Castronuovo-Silimbani提出的一些猜想的平等性。

Let $\mathcal{S}_n(π)$ (resp. $\mathcal{I}_n(π)$ and $\mathcal{AI}_n(π)$) denote the set of permutations (resp. involutions and alternating involutions) of length $n$ which avoid the permutation pattern $π$. For $k,m\geq 1$, Backelin-West-Xin proved that $|\mathcal{S}_n(12\cdots kτ)|= |\mathcal{S}_n(k\cdots 21τ)|$ by establishing a bijection between these two sets, where $τ= τ_1τ_2\cdots τ_m$ is an arbitrary permutation of $k+1,k+2,\ldots,k+m$. The result has been extended to involutions by Bousquet-Mélou and Steingrímsson and to alternating permutations by the first author. In this paper, we shall establish a peak set preserving bijection between $\mathcal{I}_n(123τ)$ and $\mathcal{I}_n(321τ)$ via transversals, matchings, oscillating tableaux and pairs of noncrossing Dyck paths as intermediate structures. Our result is a refinement of the result of Bousquet-Mélou and Steingrímsson for the case when $k=3$. As an application, we show bijectively that $|\mathcal{AI}_n(123τ)| = |\mathcal{AI}_n(321τ)|$, confirming a recent conjecture of Barnabei-Bonetti-Castronuovo-Silimbani. Furthmore, some conjectured equalities posed by Barnabei-Bonetti-Castronuovo-Silimbani concerning pattern avoiding alternating involutions are also proved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源