论文标题

杰克多项式,$ \ hbar $依赖的kp层次结构和$ {\ mathfrak {gl}}}(1)$

Jack polynomials, $\hbar$-dependent KP hierarchy and affine Yangian of ${\mathfrak{gl}}(1)$

论文作者

Wang, Na, Zhang, Can, Wu, Ke

论文摘要

在本文中,我们讨论了杰克多项式,$ \ hbar $依赖的kp层次结构和$ {\ mathfrak {gl}}}(1)$的Aggine Yangian。我们发现$α= \ hbar^2 $和$ h_1 = \ hbar,\ h_2 = - \ hbar^{ - 1} $,其中$α$是jack多项式中的参数,而$ h_1,\ h_2 $是$ hangian yangian yangian of $ yangian of $ {然后,插孔多项式中的顶点操作员与$ \ hbar $ -KP层次结构中的顶点运算符相同,并且可以使用插孔多项式来描述$ \ hbar $ -KP层次结构的tau函数。

In this paper, we discuss the relations between the Jack polynomials, $\hbar$-dependent KP hierarchy and affine Yangian of ${\mathfrak{gl}}(1)$. We find that $α=\hbar^2$ and $h_1=\hbar, \ h_2=-\hbar^{-1}$, where $α$ is the parameter in Jack polynomials, and $h_1,\ h_2$ are the parameters in affine Yangian of ${\mathfrak{gl}}(1)$. Then the vertex operators which are in Jack polynomials are the same with that in $\hbar$-KP hierarchy, and the Jack polynomials can be used to describe the tau functions of the $\hbar$-KP hierarchy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源