论文标题

虚拟元素方法没有外部稳定

Virtual Element Methods Without Extrinsic Stabilization

论文作者

Chen, Chunyu, Huang, Xuehai, Wei, Huayi

论文摘要

在任意程度的多项式中没有外部稳定的虚拟元素方法(VEMS)是针对二阶椭圆问题开发的,包括不合格的VEM和任意维度中的符合VEM。关键是要构建本地$ h(\ textrm {div})$ - 符合宏有限元元素空间,以便可以计算相关的$ l^2 $投影,即虚拟元素函数的梯度投影,并且$ l^2 $投影仪具有统一的lower键在$ l^2 $ norm中的虚拟元素函数梯度上。这些VEM得出了最佳误差估计。提供数值实验以测试VEM,而无需外部稳定。

Virtual element methods (VEMs) without extrinsic stabilization in arbitrary degree of polynomial are developed for second order elliptic problems, including a nonconforming VEM and a conforming VEM in arbitrary dimension. The key is to construct local $H(\textrm{div})$-conforming macro finite element spaces such that the associated $L^2$ projection of the gradient of virtual element functions is computable, and the $L^2$ projector has a uniform lower bound on the gradient of virtual element function spaces in $L^2$ norm. Optimal error estimates are derived for these VEMs. Numerical experiments are provided to test the VEMs without extrinsic stabilization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源