论文标题
非自我伴侣汉密尔顿人的海森伯格动态:对称性和派生
Heisenberg dynamics for non self-adjoint Hamiltonians: symmetries and derivations
论文作者
论文摘要
在最近的一些文献中,通常与增益损失系统有关的非自我伴侣汉密尔顿人的作用,即$ h \ neq h^\匕首$。这些系统的动力学在大多数情况下是根据schrödinger方程式给出的。在本文中,我们宁愿着眼于像海森伯格般的量子力学图片,强调了(很少的)相似性和(许多)差异,并尊重由自我伴侣汉密尔顿人驱动的系统的标准海森伯格图片。特别是,讨论了对称性, * - 衍生和运动积分的作用。
In some recent literature the role of non self-adjoint Hamiltonians, $H\neq H^\dagger$, is often considered in connection with gain-loss systems. The dynamics for these systems is, most of the times, given in terms of a Schrödinger equation. In this paper we rather focus on the Heisenberg-like picture of quantum mechanics, stressing the (few) similarities and the (many) differences with respected to the standard Heisenberg picture for systems driven by self-adjoint Hamiltonians. In particular, the role of the symmetries, *-derivations and integrals of motion is discussed.