论文标题

广义SASA-SASUMA方程的Darboux转换和孤子解决方案

Darboux transformation and soliton solutions of the generalized Sasa-Satsuma equation

论文作者

Sun, Hong-Qian, Zhu, Zuo-Nong

论文摘要

SASA-SATSUMA方程是一种高阶非线性Schrödinger方程,是一个重要的集成方程,它显示光纤中飞秒脉冲的传播。在本文中,我们研究了广义的SASA-SATSUMA(GSS)方程。构建了用于聚焦和散热性GSS方程的Darboux变换(DT)。通过使用DT,得出了用于广义SASA-SATSUMA方程的各种孤子溶液,包括驼峰型,呼吸型和周期性孤子。分析了这些孤子溶液的动力学特性和渐近行为。获得了无限的保存法律和GSS方程的保守量。

The Sasa-Satsuma equation, a higher-order nonlinear Schrödinger equation, is an important integrable equation, which displays the propagation of femtosecond pulses in optical fibers. In this paper, we investigate a generalized Sasa-Satsuma(gSS) equation. The Darboux transformation(DT) for the focusing and defocusing gSS equation is constructed. By using the DT, various of soliton solutions for the generalized Sasa-Satsuma equation are derived, including hump-type, breather-type and periodic soliton. Dynamics properties and asymptotic behavior of these soliton solutions are analyzed. Infinite number conservation laws and conserved quantities for the gSS equation are obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源