论文标题

具有政权切换的受控条件平均FBSDE的全球最大原则

A Global Maximum Principle for Controlled Conditional Mean-field FBSDEs with Regime Switching

论文作者

Hao, Tao, Wen, Jiaqiang, Xiong, Jie

论文摘要

本文专用于有条件的平均领域前向随机微分方程(简称FBSDES)的全局随机最大原理,并具有转换状态。控制域不必要地凸出,并且向后随机微分方程(简称BSDE)的驱动程序可能取决于$ z $。与非恢复效用的情况不同,一阶和二阶伴随方程都是高维线性BSDE。基于伴随方程式,我们揭示了一阶和二阶泰勒扩展的术语之间的关系。证明了一般的最大原则,该原则开发了Nguyen,Yin和Nguyen [22]的递归效用的工作。作为应用程序,考虑了线性季节问题,并研究了状态约束的问题。

This paper is devoted to a global stochastic maximum principle for conditional mean-field forward-backward stochastic differential equations (FBSDEs, for short) with regime switching. The control domain is unnecessarily convex and the driver of backward stochastic differential equations (BSDEs, for short) could depend on $Z$. Different from the case of non-recursive utility, the first-order and second-order adjoint equations are both high-dimensional linear BSDEs. Based on the adjoint equations, we reveal the relations among the terms of the first- and second-order Taylor's expansions. A general maximum principle is proved, which develops the work of Nguyen, Yin, and Nguyen [22] to recursive utility. As applications, the linear-quadratic problem is considered and a problem with state constraint is studied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源