论文标题

空间是一个潜在的序列:结构化序列学习作为海马中的统一表示理论

Space is a latent sequence: Structured sequence learning as a unified theory of representation in the hippocampus

论文作者

Raju, Rajkumar Vasudeva, Guntupalli, J. Swaroop, Zhou, Guangyao, Lázaro-Gredilla, Miguel, George, Dileep

论文摘要

在海马中经常发现引人入胜且令人困惑的现象,例如地标载体细胞,分离器细胞和特定于事件的表示。没有一个可以解释这些不同观察结果的统一原则,每个实验似乎都会发现新的异常或编码类型。在这里,我们提供了一个统一的原则,即空间的心理表示是潜在的高阶序列学习的新兴特性。将空间视为序列可以解决无数现象,并表明在空间和欧几里得术语中解释顺序神经元反应的位置映射方法本身可能是异常的来源。我们的模型称为克隆结构化因果图(CSCG),使用特定的高阶图脚手架来通过将感觉输入映射到唯一上下文来学习潜在表示。学习使用CSCG来压缩顺序和情节经历会导致认知图的出现 - 在适合于计划,内省,巩固和抽象的环境中,空间和概念关系的心理表示。我们证明,从经典实验中的报道到最近的海马现象,有十几种不同的海马现象,由我们的模型简洁而机械地解释。

Fascinating and puzzling phenomena, such as landmark vector cells, splitter cells, and event-specific representations to name a few, are regularly discovered in the hippocampus. Without a unifying principle that can explain these divergent observations, each experiment seemingly discovers a new anomaly or coding type. Here, we provide a unifying principle that the mental representation of space is an emergent property of latent higher-order sequence learning. Treating space as a sequence resolves myriad phenomena, and suggests that the place-field mapping methodology where sequential neuron responses are interpreted in spatial and Euclidean terms might itself be a source of anomalies. Our model, called Clone-structured Causal Graph (CSCG), uses a specific higher-order graph scaffolding to learn latent representations by mapping sensory inputs to unique contexts. Learning to compress sequential and episodic experiences using CSCGs result in the emergence of cognitive maps - mental representations of spatial and conceptual relationships in an environment that are suited for planning, introspection, consolidation, and abstraction. We demonstrate that over a dozen different hippocampal phenomena, ranging from those reported in classic experiments to the most recent ones, are succinctly and mechanistically explained by our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源