论文标题

AI在天文学中的应用

Applications of AI in Astronomy

论文作者

Djorgovski, S. G., Mahabal, A. A., Graham, M. J., Polsterer, K., Krone-Martins, A.

论文摘要

我们在天文学,天体物理学和宇宙学中提供了简短且不可避免地概述机器学习(ML)和其他AI方法。天文学进入了大数据时代,1990年代初进行了第一次数字天空调查,以及由此产生的Terascale数据集,该数据集需要自动化许多数据处理和分析任务,例如星 - 盖拉克斯(Star-Galaxy)分离,数十亿个功能向量在数百个维度中。随着天气天空调查和时域天文学的兴起,指数级的增长持续了,随之而来的Petascale数据流以及对实时处理,分类和决策的需求。这些任务已应用了各种各样的分类和聚类方法,这仍然是一个非常活跃的研究领域。在过去的十年中,我们已经看到了天文学文献的指数增长,涉及各种ML/AI应用,具有越来越多的复杂性和复杂性。 ML和AI现在是天文工具包的标准部分。随着数据复杂性的不断增加,我们预计将进一步发展,导致人类协作的发现。

We provide a brief, and inevitably incomplete overview of the use of Machine Learning (ML) and other AI methods in astronomy, astrophysics, and cosmology. Astronomy entered the big data era with the first digital sky surveys in the early 1990s and the resulting Terascale data sets, which required automating of many data processing and analysis tasks, for example the star-galaxy separation, with billions of feature vectors in hundreds of dimensions. The exponential data growth continued, with the rise of synoptic sky surveys and the Time Domain Astronomy, with the resulting Petascale data streams and the need for a real-time processing, classification, and decision making. A broad variety of classification and clustering methods have been applied for these tasks, and this remains a very active area of research. Over the past decade we have seen an exponential growth of the astronomical literature involving a variety of ML/AI applications of an ever increasing complexity and sophistication. ML and AI are now a standard part of the astronomical toolkit. As the data complexity continues to increase, we anticipate further advances leading towards a collaborative human-AI discovery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源