论文标题
学习行人社会行为词典
Learning a Pedestrian Social Behavior Dictionary
论文作者
论文摘要
了解行人行为模式是建立可以在人类之间导航的自主代理的关键组成部分。我们寻求一本学习的行人行为词典,以获取行人轨迹的语义描述。词典学习的监督方法是不切实际的,因为行人行为可能是未知的,并且手动产生行为标签的过程非常耗时。相反,我们利用一个小说,无监督的框架来创建在特定空间中观察到的行人行为的分类法。首先,我们学习了一个轨迹潜在空间,该空间可以使无监督的聚类创建一个可解释的行人行为词典。我们展示了该词典用于构建行人行为图的实用性,以可视化空间使用模式和计算行为的分布。我们通过对这些行为标签进行调节来证明一个简单但有效的轨迹预测。尽管许多轨迹分析方法依赖于RNN或变压器,但我们开发了一种轻巧的低参数方法,并显示了与ETH和UCY数据集上的SOTA相当的结果。
Understanding pedestrian behavior patterns is a key component to building autonomous agents that can navigate among humans. We seek a learned dictionary of pedestrian behavior to obtain a semantic description of pedestrian trajectories. Supervised methods for dictionary learning are impractical since pedestrian behaviors may be unknown a priori and the process of manually generating behavior labels is prohibitively time consuming. We instead utilize a novel, unsupervised framework to create a taxonomy of pedestrian behavior observed in a specific space. First, we learn a trajectory latent space that enables unsupervised clustering to create an interpretable pedestrian behavior dictionary. We show the utility of this dictionary for building pedestrian behavior maps to visualize space usage patterns and for computing the distributions of behaviors. We demonstrate a simple but effective trajectory prediction by conditioning on these behavior labels. While many trajectory analysis methods rely on RNNs or transformers, we develop a lightweight, low-parameter approach and show results comparable to SOTA on the ETH and UCY datasets.