论文标题
概率:开放世界对象检测的概率对象
PROB: Probabilistic Objectness for Open World Object Detection
论文作者
论文摘要
开放世界对象检测(OWOD)是一项新的且富有挑战性的计算机视觉任务,它弥合了现实世界中经典对象检测(OD)基准和对象检测之间的差距。除了检测和分类所见/标记的对象外,OWOD算法还有望检测新的/未知的对象 - 可以分类并逐渐学习。在标准OD中,未与标记对象重叠的对象建议自动将其分类为背景。因此,仅将OD方法应用于OWOD失败即可,因为未知对象将被预测为背景。检测未知对象的挑战源于区分未知对象和背景对象建议时缺乏监督。以前的OWOD方法试图通过使用伪标记来产生监督来克服此问题 - 但是,未知的对象检测仍然很低。概率/生成模型可以为这一挑战提供解决方案。本文中,我们引入了一个新颖的概率框架,以进行客观性估计,在该概率分布估计和对象的可能性最大化嵌入式特征空间中已知对象的可能性最大化 - 最终使我们能够估算不同建议的客观性概率。产生的概率对象基于变压器的开放世界检测器Prob将我们的框架集成到传统的对象检测模型中,并将其调整为开放世界设置。 OWOD基准上的全面实验表明,在未知对象检测($ \ sim 2 \ times $未知召回)和已知对象检测($ \ sim 10 \%$ ap)中,Prob均优于所有现有OWOD方法。我们的代码将在https://github.com/orrzohar/prob上发布。
Open World Object Detection (OWOD) is a new and challenging computer vision task that bridges the gap between classic object detection (OD) benchmarks and object detection in the real world. In addition to detecting and classifying seen/labeled objects, OWOD algorithms are expected to detect novel/unknown objects - which can be classified and incrementally learned. In standard OD, object proposals not overlapping with a labeled object are automatically classified as background. Therefore, simply applying OD methods to OWOD fails as unknown objects would be predicted as background. The challenge of detecting unknown objects stems from the lack of supervision in distinguishing unknown objects and background object proposals. Previous OWOD methods have attempted to overcome this issue by generating supervision using pseudo-labeling - however, unknown object detection has remained low. Probabilistic/generative models may provide a solution for this challenge. Herein, we introduce a novel probabilistic framework for objectness estimation, where we alternate between probability distribution estimation and objectness likelihood maximization of known objects in the embedded feature space - ultimately allowing us to estimate the objectness probability of different proposals. The resulting Probabilistic Objectness transformer-based open-world detector, PROB, integrates our framework into traditional object detection models, adapting them for the open-world setting. Comprehensive experiments on OWOD benchmarks show that PROB outperforms all existing OWOD methods in both unknown object detection ($\sim 2\times$ unknown recall) and known object detection ($\sim 10\%$ mAP). Our code will be made available upon publication at https://github.com/orrzohar/PROB.