论文标题

约旦街区的哈密顿系统类型:孤子气体动力学方程的三角洲功能降低

Hamiltonian systems of Jordan block type: delta-functional reductions of the kinetic equation for soliton gas

论文作者

Vergallo, Pierandrea, Ferapontov, Evgeny V.

论文摘要

我们证明线性退化是约旦块类型的准线性系统具有一阶汉密尔顿结构的必要条件。建立了密集的孤子气体动力学方程的线性变性系统的多汉米尔顿公式(用于kdv,Sinh-Gordon,Hard-Rod,Lieb-Liniger,dnls和可分离情况)。

We demonstrate that linear degeneracy is a necessary condition for quasilinear systems of Jordan block type to possess first-order Hamiltonian structures. Multi-Hamiltonian formulation of linearly degenerate systems governing delta-functional reductions of the kinetic equation for dense soliton gas is established (for KdV, sinh-Gordon, hard-rod, Lieb-Liniger, DNLS, and separable cases).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源