论文标题

无线系统中用于基于数字双胞胎的控制,监视和数据收集的贝叶斯框架

A Bayesian Framework for Digital Twin-Based Control, Monitoring, and Data Collection in Wireless Systems

论文作者

Ruah, Clement, Simeone, Osvaldo, Al-Hashimi, Bashir

论文摘要

在制造和航空航天部门通常采用的数字双胞胎(DT)平台越来越被视为一种有希望的范式,可控制,监视和分析基于软件的“ Open”通信系统。值得注意的是,DT平台提供了一个用于通信系统人工智能(AI)解决方案的沙箱,有可能减少在现场收集数据和测试算法的需求,即在物理双胞胎(PT)上。 DT系统部署的主要挑战是确保DT的虚拟控制优化,监视和分析是安全可靠的,避免了“模型开发”引起的错误决策。为了应对这一挑战,本文提出了一个普通的贝叶斯框架,目的是量化和考虑DT的模型不确定性,这是由于PT可用的数据可用数据的限制和质量所致。在拟议的框架中,DT构建了通信系统的贝叶斯模型,该模型的利用可实现核心DT功能,例如通过多代理增强学习(MARL)控制PT,监测PT以进行异常检测,预测,数据接收优化和反事实分析。为了举例说明所提出的框架的应用,我们专门研究了一个案例研究系统,其中包含多个向通用接收器报告的多个感应设备。与标准的基于模型的解决方案相比,实验结果证明了所提出的贝叶斯框架的有效性。

Commonly adopted in the manufacturing and aerospace sectors, digital twin (DT) platforms are increasingly seen as a promising paradigm to control, monitor, and analyze software-based, "open", communication systems. Notably, DT platforms provide a sandbox in which to test artificial intelligence (AI) solutions for communication systems, potentially reducing the need to collect data and test algorithms in the field, i.e., on the physical twin (PT). A key challenge in the deployment of DT systems is to ensure that virtual control optimization, monitoring, and analysis at the DT are safe and reliable, avoiding incorrect decisions caused by "model exploitation". To address this challenge, this paper presents a general Bayesian framework with the aim of quantifying and accounting for model uncertainty at the DT that is caused by limitations in the amount and quality of data available at the DT from the PT. In the proposed framework, the DT builds a Bayesian model of the communication system, which is leveraged to enable core DT functionalities such as control via multi-agent reinforcement learning (MARL), monitoring of the PT for anomaly detection, prediction, data-collection optimization, and counterfactual analysis. To exemplify the application of the proposed framework, we specifically investigate a case-study system encompassing multiple sensing devices that report to a common receiver. Experimental results validate the effectiveness of the proposed Bayesian framework as compared to standard frequentist model-based solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源