论文标题
大脑PET-MR通过深度学习校正:成人和临床小儿数据的方法验证
Brain PET-MR attenuation correction with deep learning: method validation in adult and clinical paediatric data
论文作者
论文摘要
基于磁共振的正电子发射断层扫描校正校正(PET-MR AC)的当前方法比计算机断层扫描(CT)基于计算机断层扫描(CT)的AC方法的能力少,以捕获个体间的变异性和头骨异常。已经提出了深度学习方法来从MR图像中产生伪CT,但是在大型临床队列中尚未评估这些方法。对健康数据训练的方法可能无法在颅骨形态计量法可能是异常的临床人群中起作用,或者在颅骨往往更薄且更小的小儿数据中。在这里,我们训练基于U-NET的卷积神经网络,为PET-MR AC生产伪CT。我们培训了我们的网络,以混合健康成年人和接受临床PET扫描的患者进行神经病学研究。我们表明,与参考CT相比,我们的方法能够以平均绝对错误(MAE)为100.4 $ \ pm $ 21.3 hu产生伪CT,其颅骨面膜中的Jaccard重叠系数为0.73 $ \ pm 0.07。与基于CT基于CT的线性衰减映射相比,基于我们的伪CT(相对MAE = 8.4 $ \ pm $ 2.1 \%)的线性衰减图比基于良好表现的基于多ATLA的AC方法(相对MAE = 13.1 $ \ pm $ 1.5 \%)更准确。我们在临床小儿队列中完善了训练有素的网络。 MAE从174.7 $ \ pm $ 33.6 HU改善,当使用现有网络到小儿数据集中转移学习后的127.3 $ \ pm $ 39.9 HU,因此表明转移学习可以提高儿科数据中的伪CT精度。
Current methods for magnetic resonance-based positron emission tomography attenuation correction (PET-MR AC) are time consuming, and less able than computed tomography (CT)-based AC methods to capture inter-individual variability and skull abnormalities. Deep learning methods have been proposed to produce pseudo-CT from MR images, but these methods have not yet been evaluated in large clinical cohorts. Methods trained on healthy adult data may not work in clinical cohorts where skull morphometry may be abnormal, or in paediatric data where skulls tend to be thinner and smaller. Here, we train a convolutional neural network based on the U-Net to produce pseudo-CT for PET-MR AC. We trained our network on a mixed cohort of healthy adults and patients undergoing clinical PET scans for neurology investigations. We show that our method was able to produce pseudo-CT with mean absolute errors (MAE) of 100.4 $\pm$ 21.3 HU compared to reference CT, with a Jaccard overlap coefficient of 0.73 $\pm$ 0.07 in the skull masks. Linear attenuation maps based on our pseudo-CT (relative MAE = 8.4 $\pm$ 2.1\%) were more accurate than those based on a well-performing multi-atlas-based AC method (relative MAE = 13.1 $\pm$ 1.5\%) when compared with CT-based linear attenuation maps. We refined the trained network in a clinical paediatric cohort. MAE improved from 174.7 $\pm$ 33.6 HU when using the existing network to 127.3 $\pm$ 39.9 HU after transfer learning in the paediatric dataset, thus showing that transfer learning can improve pseudo-CT accuracy in paediatric data.