论文标题

不连续的condimension-two vlasov方程中的分叉

Discontinuous codimension-two bifurcation in a Vlasov equation

论文作者

Yamaguchi, Yoshiyuki Y., Barré, Julien

论文摘要

在vlasov方程中,均匀固定状态的不稳定通常由连续分叉的描述,其特征在于不稳定模式和连续光谱之间的强共振。但是,当参考固态具有平坦的顶部时,众所周知,共振会大大削弱,分叉变得不连续。在本文中,我们使用分析工具和精确的数值模拟的组合来证明此行为与复异构 - 两分分叉有关,我们会详细研究。

In a Vlasov equation, the destabilization of a homogeneous stationary state is typically described by a continuous bifurcation characterized by strong resonances between the unstable mode and the continuous spectrum. However, when the reference stationary state has a flat top, it is known that resonances drastically weaken, and the bifurcation becomes discontinuous. In this article, we use a combination of analytical tools and precise numerical simulations to demonstrate that this behavior is related to a codimension-two bifurcation, which we study in details.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源