论文标题

调查CNN构型的某些选择用于脑病变细分

Investigating certain choices of CNN configurations for brain lesion segmentation

论文作者

Rahimpour, Masoomeh, Radwan, Ahmed, Vandermeulen, Henri, Sunaert, Stefan, Goffin, Karolien, Koole, Michel

论文摘要

多年来,脑肿瘤成像一直是临床常规的一部分,用于进行肿瘤的非侵入性检测和分级。肿瘤分割是管理原发性脑肿瘤的关键步骤,因为它允许体积分析对肿瘤生长或收缩进行纵向随访,以监测疾病进展和治疗反应。另外,它促进了进一步的定量分析,例如放射线学。深度学习模型,尤其是CNN,在许多医学图像分析的应用中都是一种选择的方法,包括脑肿瘤分割。在这项研究中,我们研究了CNN模型的主要设计方面,用于基于MRI的脑肿瘤分割的特定任务。使用两个常用的CNN架构(即深度元和U-NET)来评估基本参数的影响,例如学习率,批处理大小,损失功能和优化器。使用Brats 2018数据集评估了使用不同配置的CNN模型的性能,以确定性能最大的模型。然后,使用我们的内部数据集评估了模型的概括能力。对于所有实验,与DeepMedic相比,U-NET获得了更高的DSC。但是,使用T1W序列数据使用Flair序列数据和肿瘤核心分割,对于整个肿瘤分割而言,差异仅具有统计学意义。当使用U-NET和DeepMedic Architectures训练CNN模型时,Adam和SGD的初始学习率都设置为0.001提供了最高的分割DSC。当使用不同的归一化方法时,未观察到显着差异。在损失功能方面,软骰子和跨透明术损失与设置为0.5的加权组合导致了DeepMedic和U-NET模型的分割性能和训练稳定性的改善。

Brain tumor imaging has been part of the clinical routine for many years to perform non-invasive detection and grading of tumors. Tumor segmentation is a crucial step for managing primary brain tumors because it allows a volumetric analysis to have a longitudinal follow-up of tumor growth or shrinkage to monitor disease progression and therapy response. In addition, it facilitates further quantitative analysis such as radiomics. Deep learning models, in particular CNNs, have been a methodology of choice in many applications of medical image analysis including brain tumor segmentation. In this study, we investigated the main design aspects of CNN models for the specific task of MRI-based brain tumor segmentation. Two commonly used CNN architectures (i.e. DeepMedic and U-Net) were used to evaluate the impact of the essential parameters such as learning rate, batch size, loss function, and optimizer. The performance of CNN models using different configurations was assessed with the BraTS 2018 dataset to determine the most performant model. Then, the generalization ability of the model was assessed using our in-house dataset. For all experiments, U-Net achieved a higher DSC compared to the DeepMedic. However, the difference was only statistically significant for whole tumor segmentation using FLAIR sequence data and tumor core segmentation using T1w sequence data. Adam and SGD both with the initial learning rate set to 0.001 provided the highest segmentation DSC when training the CNN model using U-Net and DeepMedic architectures, respectively. No significant difference was observed when using different normalization approaches. In terms of loss functions, a weighted combination of soft Dice and cross-entropy loss with the weighting term set to 0.5 resulted in an improved segmentation performance and training stability for both DeepMedic and U-Net models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源