论文标题

通用多模式多目标优化的共同进化框架

Coevolutionary Framework for Generalized Multimodal Multi-objective Optimization

论文作者

Li, Wenhua, Yao, Xingyi, Li, Kaiwen, Wang, Rui, Zhang, Tao, Wang, Ling

论文摘要

大多数多模式多目标进化算法(MMEAS)旨在为多模式多模型多目标优化问题(MMOP)找到所有全局帕累托最佳集合(PSS)。但是,在实际问题中,决策者(DMS)也可能对本地PSS感兴趣。同样,鉴于与MMOP的打交道,搜索全球和本地PSS更一般,这可以看作是广义的MMOP。此外,最新的MMEAS在高维mMOP上的收敛性较差。为了解决上述两个问题,在这项研究中,提出了一个新的共同进化框架,该框架称为多模式多目标优化,以更好地获得全球和局部PSS,同时同时获得与高维MMOP的交汇性能。具体而言,纪念馆将两个档案引入了搜索过程,并通过有效的知识转移同时将它们进行了协调。融合档案库有助于将其快速接近帕累托最佳阵线(PF)。然后将融合解决方案的知识转移到多样性档案库中,该档案利用了局部收敛指标和$ε$ - 世界的方法,以有效地获得全球和本地PSS。实验结果表明,与五十四个复杂MMOP的七个最先进的MMEAS相比,纪念物具有竞争力。

Most multimodal multi-objective evolutionary algorithms (MMEAs) aim to find all global Pareto optimal sets (PSs) for a multimodal multi-objective optimization problem (MMOP). However, in real-world problems, decision makers (DMs) may be also interested in local PSs. Also, searching for both global and local PSs is more general in view of dealing with MMOPs, which can be seen as a generalized MMOP. In addition, the state-of-the-art MMEAs exhibit poor convergence on high-dimension MMOPs. To address the above two issues, in this study, a novel coevolutionary framework termed CoMMEA for multimodal multi-objective optimization is proposed to better obtain both global and local PSs, and simultaneously, to improve the convergence performance in dealing with high-dimension MMOPs. Specifically, the CoMMEA introduces two archives to the search process, and coevolves them simultaneously through effective knowledge transfer. The convergence archive assists the CoMMEA to quickly approaching the Pareto optimal front (PF). The knowledge of the converged solutions is then transferred to the diversity archive which utilizes the local convergence indicator and the $ε$-dominance-based method to obtain global and local PSs effectively. Experimental results show that CoMMEA is competitive compared to seven state-of-the-art MMEAs on fifty-four complex MMOPs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源