论文标题

DWRSEG:重新思考有效地获取多尺度上下文信息以实时语义细分

DWRSeg: Rethinking Efficient Acquisition of Multi-scale Contextual Information for Real-time Semantic Segmentation

论文作者

Wei, Haoran, Liu, Xu, Xu, Shouchun, Dai, Zhongjian, Dai, Yaping, Xu, Xiangyang

论文摘要

许多当前的作品直接采用多速率深度扩张的卷积,从一个输入特征图中同时捕获多尺度上下文信息,从而提高了实时语义分割的特征提取效率。但是,由于不合理的结构和超参数,这种设计可能会导致难以访问多尺度上下文信息。为了降低绘制多尺度上下文信息的难度,我们提出了一种高效的多尺度特征提取方法,该方法将原始的单步方法分解为两个步骤,即区域残留式语义差残差。在这种方法中,多速率深度扩张的卷积在特征提取中扮演更简单的作用:基于第一步提供的每个简洁的区域形式的简洁特征图,在第二步中执行一个简单的基于语义的形态滤波,以提高其效率。此外,每个网络阶段的膨胀率和扩张的卷积能力都被详细阐述以充分利用可以实现的区域形式的所有特征图。我们设计了一个新颖的膨胀范围残差(DWR)模块,以及一个简单的倒置残基(SIR)模块,分别用于高级和低级网络,并组成功能强大的DWR semert(dwr),并制定了一个功能dwrsegy(dwr)。对城市景观和CAMVID数据集进行了广泛的实验,除了重量更轻之外,还通过在准确性和推理速度之间实现了最新的权衡,从而证明了我们方法的有效性。如果不预读或诉诸于任何训练技巧,我们在一台NVIDIA GEFORCE GTX 1080 TI卡上以319.5 fps的速度获得了72.7%的MIOU,超过了69.5 fps和0.8%MIOU的最新速度。代码和训练有素的模型已公开可用。

Many current works directly adopt multi-rate depth-wise dilated convolutions to capture multi-scale contextual information simultaneously from one input feature map, thus improving the feature extraction efficiency for real-time semantic segmentation. However, this design may lead to difficult access to multi-scale contextual information because of the unreasonable structure and hyperparameters. To lower the difficulty of drawing multi-scale contextual information, we propose a highly efficient multi-scale feature extraction method, which decomposes the original single-step method into two steps, Region Residualization-Semantic Residualization. In this method, the multi-rate depth-wise dilated convolutions take a simpler role in feature extraction: performing simple semantic-based morphological filtering with one desired receptive field in the second step based on each concise feature map of region form provided by the first step, to improve their efficiency. Moreover, the dilation rates and the capacity of dilated convolutions for each network stage are elaborated to fully utilize all the feature maps of region form that can be achieved.Accordingly, we design a novel Dilation-wise Residual (DWR) module and a Simple Inverted Residual (SIR) module for the high and low level network, respectively, and form a powerful DWR Segmentation (DWRSeg) network. Extensive experiments on the Cityscapes and CamVid datasets demonstrate the effectiveness of our method by achieving a state-of-the-art trade-off between accuracy and inference speed, in addition to being lighter weight. Without pretraining or resorting to any training trick, we achieve an mIoU of 72.7% on the Cityscapes test set at a speed of 319.5 FPS on one NVIDIA GeForce GTX 1080 Ti card, which exceeds the latest methods of a speed of 69.5 FPS and 0.8% mIoU. The code and trained models are publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源