论文标题

对遥感图像的多标签分类的深度积极学习

Deep Active Learning for Multi-Label Classification of Remote Sensing Images

论文作者

Möllenbrok, Lars, Sumbul, Gencer, Demir, Begüm

论文摘要

在这封信中,我们在遥感(RS)中介绍了多标签分类(MLC)问题的深度积极学习(AL)。特别是,我们研究了RS图像的MLC几个Al查询函数的有效性。与现有的AL查询函数(针对单标签分类或语义分割问题定义)不同,本文中的每个查询函数都基于对两个标准的评估:i)多标签不确定性; ii)多标签多样性。多标签的不确定性标准与深度神经网络(DNN)在正确分配每个图像的多标签方面的置信度有关。为了评估此标准,我们研究了三种策略:i)学习多标签损失顺序; ii)测量多标签预测的时间差异; iii)测量近似梯度嵌入的大小。多标签多样性标准与选择一组彼此尽可能多样化的图像相关,以防止它们之间的冗余。为了评估此标准,我们利用基于聚类的策略。我们将上述不确定性策略与基于聚类的多样性策略相结合,从而产生了三种不同的查询功能。所有考虑的查询功能是在Rs中首次引入的MLC问题框架。在两个基准档案中获得的实验结果表明,在AL过程的每次迭代中,这些查询函数都会选择一组信息丰富的样品。

In this letter, we introduce deep active learning (AL) for multi-label classification (MLC) problems in remote sensing (RS). In particular, we investigate the effectiveness of several AL query functions for MLC of RS images. Unlike the existing AL query functions (which are defined for single-label classification or semantic segmentation problems), each query function in this paper is based on the evaluation of two criteria: i) multi-label uncertainty; and ii) multi-label diversity. The multi-label uncertainty criterion is associated to the confidence of the deep neural networks (DNNs) in correctly assigning multi-labels to each image. To assess this criterion, we investigate three strategies: i) learning multi-label loss ordering; ii) measuring temporal discrepancy of multi-label predictions; and iii) measuring magnitude of approximated gradient embeddings. The multi-label diversity criterion is associated to the selection of a set of images that are as diverse as possible to each other that prevents redundancy among them. To assess this criterion, we exploit a clustering based strategy. We combine each of the above-mentioned uncertainty strategies with the clustering based diversity strategy, resulting in three different query functions. All the considered query functions are introduced for the first time in the framework of MLC problems in RS. Experimental results obtained on two benchmark archives show that these query functions result in the selection of a highly informative set of samples at each iteration of the AL process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源