论文标题
算术方案的希尔伯特财产
The Hilbert property for arithmetic schemes
论文作者
论文摘要
我们通过要求一组近综合点(由VOJTA定义)不稀薄,从而扩展了田地上的希尔伯特属性。然后,我们通过证明与Hilbert Property的算术算术方案相关的几个结构结果,从而概括了Bary-Sorker-Fehm-Petersen和Corvaja-Zannier的结果。
We extend the usual Hilbert property for varieties over fields to arithmetic schemes over integral domains by demanding the set of near-integral points (as defined by Vojta) to be non-thin. We then generalize results of Bary-Soroker-Fehm-Petersen and Corvaja-Zannier by proving several structure results related to products and finite étale covers of arithmetic schemes with the Hilbert property.