论文标题

(重力 - - )粘性原球盘的卵石形成具有各种湍流强度

Formation of pebbles in (gravito-)viscous protoplanetary disks with various turbulent strengths

论文作者

Vorobyov, Eduard I., Elbakyan, Vardan G., Johansen, Anders, Lambrechts, Michiel, Skliarevskii, Aleksandr M., Stoyanovskaya, O. P.

论文摘要

目标。尘埃在原星盘的进化中起着至关重要的作用。我们研究了具有各种湍流粘度强度的自我修剪的年轻原月球磁盘中最初低于$ $ $ $ $ $ $的粉尘颗粒的动力和增长。我们旨在了解当磁盘自我实力和湍流粘度都可以同时进行时,确定卵石的形成和空间分布的物理条件。方法。我们使用FeOSAD代码在0.5 MYR的初始时间段内对自我磨削原球磁盘进行自我磨损的原理磁盘进行薄盘流体动力学模拟。湍流粘度是根据空间和时间恒定$α$参数来参数化的,而通过计算有效参数$α_ {\ rm gi} $来解释引力不稳定性对粉尘生长的影响。我们考虑了灰尘成分的演变,包括与气体,尘埃自我实现的动量交换以及简化的灰尘生长模型。结果。我们发现湍流粘度水平强烈影响磁盘中卵石的空间分布和总质量。 $α= 10^{ - 2} $模型是粘度为主导的,完全不存在的鹅卵石,并且在整个磁盘范围内,尘埃质量比偏离参考值1:100值不超过30 \%。相反,$α= 10^{ - 3} $模型,尤其是$α= 10^{ - 4} $模型以重力不稳定性为主。现在,有效参数$α+α_ {\ rm gi} $现在是径向距离的强大函数。结果,最内向的磁盘区域会形成瓶颈效应,这使得气体和灰尘会在类似环形的结构中积聚。简略。

Aims. Dust plays a crucial role in the evolution of protoplanetary disks. We study the dynamics and growth of initially sub-$μm$ dust particles in self-gravitating young protoplanetary disks with various strengths of turbulent viscosity. We aim to understand the physical conditions that determine the formation and spatial distribution of pebbles when both disk self-gravity and turbulent viscosity can be concurrently at work. Methods. We perform the thin-disk hydrodynamics simulations of self-gravitating protoplanetary disks over an initial time period of 0.5 Myr using the FEOSAD code. Turbulent viscosity is parameterized in terms of the spatially and temporally constant $α$-parameter, while the effects of gravitational instability on dust growth is accounted for by calculating the effective parameter $α_{\rm GI}$. We consider the evolution of dust component including momentum exchange with gas, dust self-gravity, and also a simplified model of dust growth. Results. We find that the level of turbulent viscosity strongly affects the spatial distribution and total mass of pebbles in the disk. The $α=10^{-2}$ model is viscosity-dominated, pebbles are completely absent, and dust-to-gas mass ratio deviates from the reference 1:100 value no more than by 30\% throughout the disk extent. On the contrary, the $α=10^{-3}$ model and, especially, the $α=10^{-4}$ model are dominated by gravitational instability. The effective parameter $α+α_{\rm GI}$ is now a strongly varying function of radial distance. As a consequence, a bottle neck effect develops in the innermost disk regions, which makes gas and dust accumulate in a ring-like structure. Abridged.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源