论文标题
云设备协作适应现实世界中不断变化的环境
Cloud-Device Collaborative Adaptation to Continual Changing Environments in the Real-world
论文作者
论文摘要
当面对现实世界中不断变化的环境时,客户设备上的轻量级模型会遭受分配变化的严重性能下降。现有设备模型的主要局限性在于(1)由于设备的计算限制而无法更新,(2)轻质模型的概括能力有限。同时,最近的大型模型在云上显示出强大的概括能力,而由于计算限制不佳,因此无法在客户端设备上部署它们。为了使设备模型能够应对不断变化的环境,我们提出了一个新的云设备协作范围持续适应的学习范式,该范式鼓励云与设备之间的协作并改善设备模型的概括。基于此范式,我们进一步提出了一个基于不确定性的视觉提示(U-VPA)教师学生模型,以将大型模型在云上的概括能力传输到设备模型。具体而言,我们首先设计了不确定性引导采样(UGS),以连续筛选出具有挑战性的数据,并将最多的分布样品从设备传输到云。然后,我们提出了一种具有不确定性的视觉及时学习策略,具有不确定性引导更新(VPLU),以专门处理具有更多分发变化的所选样品。我们将视觉提示传输到设备,并将其与传入数据相连,以将设备测试的分配更接近云训练分布。我们对具有不断变化的环境的两个对象检测数据集进行了广泛的实验。我们提出的U-VPA教师学生框架的表现优于先前的最新测试时间适应和设备云协作方法。代码和数据集将发布。
When facing changing environments in the real world, the lightweight model on client devices suffers from severe performance drops under distribution shifts. The main limitations of the existing device model lie in (1) unable to update due to the computation limit of the device, (2) the limited generalization ability of the lightweight model. Meanwhile, recent large models have shown strong generalization capability on the cloud while they can not be deployed on client devices due to poor computation constraints. To enable the device model to deal with changing environments, we propose a new learning paradigm of Cloud-Device Collaborative Continual Adaptation, which encourages collaboration between cloud and device and improves the generalization of the device model. Based on this paradigm, we further propose an Uncertainty-based Visual Prompt Adapted (U-VPA) teacher-student model to transfer the generalization capability of the large model on the cloud to the device model. Specifically, we first design the Uncertainty Guided Sampling (UGS) to screen out challenging data continuously and transmit the most out-of-distribution samples from the device to the cloud. Then we propose a Visual Prompt Learning Strategy with Uncertainty guided updating (VPLU) to specifically deal with the selected samples with more distribution shifts. We transmit the visual prompts to the device and concatenate them with the incoming data to pull the device testing distribution closer to the cloud training distribution. We conduct extensive experiments on two object detection datasets with continually changing environments. Our proposed U-VPA teacher-student framework outperforms previous state-of-the-art test time adaptation and device-cloud collaboration methods. The code and datasets will be released.