论文标题

年轻人的脑结构连接组的遗传基础

Genetic underpinnings of brain structural connectome for young adults

论文作者

Zhao, Yize, Chang, Changgee, Zhang, Jingwen, Zhang, Zhengwu

论文摘要

具有与行为表型的明显优势,大脑成像性状已成为新兴的内表型,以剖析对行为和神经精神疾病的分子贡献。在不同的成像特征中,大脑结构连通性(即结构连接组)总结了不同大脑区域之间的解剖连接,是最尖端的特征之一,而对特征不足。并且对结构连接组变异的遗传影响仍然高度难以捉摸。我们依靠对年轻人的地标成像遗传学研究,我们开发了一种生物学上合理的脑网络响应收缩模型,以全面地表征高维遗传变异和结构连接组表型之间的关系。在统一的贝叶斯框架下,我们适应了基因组中大脑网络和生物结构的拓扑。并最终在遗传生物标志物和相关的大脑子网络单元之间建立机械映射。开发了有效的期望最大化算法,以估计模型并确保计算可行性。在针对人类连接的年轻人(HCP-YA)数据的应用中,我们建立了在功能注释和脑组织EQTL分析下高度可解释的遗传基础,用于连接海马和两个脑半球的脑白质区。我们还在广泛的模拟中展示了我们方法的优势。

With distinct advantages in power over behavioral phenotypes, brain imaging traits have become emerging endophenotypes to dissect molecular contributions to behaviors and neuropsychiatric illnesses. Among different imaging features, brain structural connectivity (i.e., structural connectome), which summarizes the anatomical connections between different brain regions, is one of the most cutting-edge while under-investigated traits; and the genetic influence on the structural connectome variation remains highly elusive. Relying on a landmark imaging genetics study for young adults, we develop a biologically plausible brain network response shrinkage model to comprehensively characterize the relationship between high dimensional genetic variants and the structural connectome phenotype. Under a unified Bayesian framework, we accommodate the topology of brain network and biological architecture within the genome; and eventually establish a mechanistic mapping between genetic biomarkers and the associated brain sub-network units. An efficient expectation-maximization algorithm is developed to estimate the model and ensure computing feasibility. In the application to the Human Connectome Project Young Adult (HCP-YA) data, we establish the genetic underpinnings which are highly interpretable under functional annotation and brain tissue eQTL analysis, for the brain white matter tracts connecting the hippocampus and two cerebral hemispheres. We also show the superiority of our method in extensive simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源