论文标题

杂交深度学习异常检测框架用于入侵检测

A Hybrid Deep Learning Anomaly Detection Framework for Intrusion Detection

论文作者

Kale, Rahul, Lu, Zhi, Fok, Kar Wai, Thing, Vrizlynn L. L.

论文摘要

损害用户的关键和敏感数据的网络入侵攻击正在逐步升级,尤其是随着我们日常生活与互联网之间的联系不断增长。这种入侵攻击的大量和高复杂性阻碍了大多数传统防御技术的有效性。同时,机器学习方法的出色表现,尤其是在计算机视觉中的深度学习,从而从网络安全社区获得了研究兴趣,以进一步增强和自动化入侵检测。但是,昂贵的数据标记和异常数据的局限性使得以完全监督的方式训练入侵探测器变得具有挑战性。因此,基于无监督异常检测的侵入检测也是重要特征。在本文中,我们提出了一个三阶段的深度学习检测基于网络入侵攻击检测框架。该框架包括无监督(K-均值聚类),半监督(Ganomaly)和监督学习(CNN)算法的集成。然后,我们在三个基准数据集上评估并展示了我们实施的框架的性能:NSL-KDD,CIC-IDS2018和TON_IOT。

Cyber intrusion attacks that compromise the users' critical and sensitive data are escalating in volume and intensity, especially with the growing connections between our daily life and the Internet. The large volume and high complexity of such intrusion attacks have impeded the effectiveness of most traditional defence techniques. While at the same time, the remarkable performance of the machine learning methods, especially deep learning, in computer vision, had garnered research interests from the cyber security community to further enhance and automate intrusion detections. However, the expensive data labeling and limitation of anomalous data make it challenging to train an intrusion detector in a fully supervised manner. Therefore, intrusion detection based on unsupervised anomaly detection is an important feature too. In this paper, we propose a three-stage deep learning anomaly detection based network intrusion attack detection framework. The framework comprises an integration of unsupervised (K-means clustering), semi-supervised (GANomaly) and supervised learning (CNN) algorithms. We then evaluated and showed the performance of our implemented framework on three benchmark datasets: NSL-KDD, CIC-IDS2018, and TON_IoT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源