论文标题

Trie被压缩的可相互选择集

Trie-Compressed Intersectable Sets

论文作者

Arroyuelo, Diego, Castillo, Juan Pablo

论文摘要

我们介绍了离线设置相交问题的空间和时间效率算法和数据结构。我们表明,可以使用压缩空间来表示$ n $元素的分类整数$ s \ subseteq [0 {..} u)$,同时支持自适应$ o的$ k $ -way交叉点(kδ\ lg {\ lg!(u/δ)})$ time,$δ$ the prabs wisted tabraby和keny in wisted wisted wisted wisted wisted wisted wist y rarbay and kenyon。我们的实验结果表明,我们的方法在实践中具有竞争力,超过了最有效的替代方案(分区的Elias-Fano索引,咆哮的位图和递归宇宙分区(RUP))在几种情况下提供了一般相关时空交易。

We introduce space- and time-efficient algorithms and data structures for the offline set intersection problem. We show that a sorted integer set $S \subseteq [0{..}u)$ of $n$ elements can be represented using compressed space while supporting $k$-way intersections in adaptive $O(kδ\lg{\!(u/δ)})$ time, $δ$ being the alternation measure introduced by Barbay and Kenyon. Our experimental results suggest that our approaches are competitive in practice, outperforming the most efficient alternatives (Partitioned Elias-Fano indexes, Roaring Bitmaps, and Recursive Universe Partitioning (RUP)) in several scenarios, offering in general relevant space-time trade-offs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源