论文标题
恒定曲率表面上的随机圆形台球:伪的可集成性和混合
Random circular billiards on surfaces of constant curvature: Pseudo integrability and mixing
论文作者
论文摘要
给定一个随机地图(T_1,T_2,T_3,T_4,P_1,P_1,P_2,P_3,P_4),我们在恒定曲率(Euclidean Plane,双曲线平面或球体)的表面上定义一个随机台球图。这张台球地图是Liouville措施不变。最后,在随机圆台球的情况下,我们显示了一些动力学特性,例如牙骨质。
Given a random map (T_1, T_2, T_3, T_4, p_1, p_2, p_3, p_4), we define a random billiard map on a surface of constant curvature (Euclidean plane, hyperbolic plane, or the sphere). The Liouville measure is invariant for this billiard map. Finally, we show some dynamical properties such as ergodicity in the case of random circular billiards.