论文标题

原子制作的量子点的原子近端超导性

Proximity superconductivity in atom-by-atom crafted quantum dots

论文作者

Schneider, Lucas, Ton, Khai That, Ioannidis, Ioannis, Neuhaus-Steinmetz, Jannis, Posske, Thore, Wiesendanger, Roland, Wiebe, Jens

论文摘要

电子接触中的无间隙材料在界面附近的区域中获得了接近诱导的超导性。许多建议基于对最初非渗透系统(如铁磁体)的添加,并预测物质的有趣量子阶段,包括拓扑 - 频率,奇数 - 频率或鼻音点超导性。然而,缺少导致近端诱导的库珀配对的微观机制的原子尺度实验研究。在这里,我们研究了仅通过扫描隧道显微镜构建的,限制在量子柱上的表面状态的单个量子水平的邻近效应的最小示例。每当将畜栏的本征通过调节畜栏的尺寸接近费米能量时,一对粒子孔对称状态都会进入超导体的间隙。我们将间隙状态识别为散射共振在50年前由Machida和Shibata预测的,这些共鸣已经远到迄今的检测。我们进一步表明,观察到的间隙状态的抗骨骼表明量子Corral的本征模中的近端诱导的配对。我们的结果对在非常规或拓扑超导体中对间隙状态的解释产生了直接的影响,佐证的概念以诱导超导性为单个量子水平,并进一步铺平了超导人工晶格的道路。

Gapless materials in electronic contact with superconductors acquire proximity-induced superconductivity in a region near the interface. Numerous proposals build on this addition of electron pairing to originally non-superconducting systems like ferromagnets and predict intriguing quantum phases of matter, including topological-, odd-frequency-, or nodal-point superconductivity. However, atomic-scale experimental investigations of the microscopic mechanisms leading to proximity-induced Cooper pairing in surface or interface states are missing. Here, we investigate the most miniature example of the proximity effect on only a single quantum level of a surface state confined in a quantum corral on a superconducting substrate, built atom-by-atom by a scanning tunneling microscope. Whenever an eigenmode of the corral is pitched close to the Fermi energy by adjusting the corral's size, a pair of particle-hole symmetric states enters the superconductor's gap. We identify the in-gap states as scattering resonances theoretically predicted 50 years ago by Machida and Shibata, which had so far eluded detection. We further show that the observed anticrossings of the in-gap states indicate proximity-induced pairing in the quantum corral's eigenmodes. Our results have direct consequences on the interpretation of in-gap states in unconventional or topological superconductors, corroborate concepts to induce superconductivity into a single quantum level and further pave the way towards superconducting artificial lattices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源